This document reports on the progress made in the EXPERIMEDIA CONFetti experiment after the definition of its problem statement and requirements. The general status of the experiment is described, followed by a specific explanation of the progress in different areas of the experiment's focus.
<table>
<thead>
<tr>
<th>Project acronym</th>
<th>EXPERIMEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full title</td>
<td>Experiments in live social and networked media experiences</td>
</tr>
<tr>
<td>Grant agreement number</td>
<td>287966</td>
</tr>
<tr>
<td>Funding scheme</td>
<td>Large-scale Integrating Project (IP)</td>
</tr>
<tr>
<td>Work programme topic</td>
<td>Objective ICT-2011.1.6 Future Internet Research and Experimentation (FIRE)</td>
</tr>
<tr>
<td>Project start date</td>
<td>2011-10-01</td>
</tr>
<tr>
<td>Project duration</td>
<td>36 months</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Experimentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpackage</td>
<td>4.6 Remote and collaborative training for acrobatic sports</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deliverable lead organisation</th>
<th>PSNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Sergiusz Zieliński, Eryk Skotarczak, Łukasz Czyż (PSNC)</td>
</tr>
<tr>
<td>Reviewers</td>
<td>Jens Grubert (TUG), Stefan Prettenhofer (Infonova)</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Status</td>
<td>Final</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dissemination level</th>
<th>PU: Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due date</td>
<td>PM18 (2013-03-31)</td>
</tr>
<tr>
<td>Delivery date</td>
<td>2013-05-15</td>
</tr>
</tbody>
</table>
Table of Contents

1. Executive Summary ... 3
2. Introduction .. 4
3. General experiment status .. 6
4. Progress in specific areas ... 8
 4.1. Adaptation of the HDVIPER platform for the experiment ... 8
 4.2. Adaptation of the Vitrall system for the experiment ... 8
 4.3. Adaptation of the 3D video acquisition system for the experiment 9
 4.4. Integration with Audio Video Content Component ... 10
 4.4.1. 3D transcoder ... 10
 4.4.2. Minisip videoconferencing client ... 11
 4.4.3. Coach control panel ... 11
 4.5. Integration with Experiment Content Component ... 12
 4.6. Integration with 3D Acrobatic Sport experiment ... 12
 4.7. Preparation for first experiment run ... 14
 4.8. Legal and privacy issues ... 14
 4.9. Dissemination ... 14
 4.10. Meetings .. 14
5. Conclusion .. 16
1. Executive Summary

This document reports on the progress made in the CONFetti experiment after the definition of its problem statement and requirements. The general status of the experiment is described, followed by a specific explanation of the progress in all the fields of its activity.

Section 2 is an introduction providing a recapitulation of the experiment's goals and the architecture of the setup it utilises.

Section 3 explains the general state of the experiment's progress, whereas Section 4 gives an overview of the accomplishments in consecutive areas of the experiment's focus. The adaptation of internal elements of the experiment's setup allows to hold the first run of the experiment, whereas integration with EXPERIMEDIA baseline components is in progress.

Section 5 brings a conclusion to the document and sums up the main points.
2. Introduction

This section provides a summary of the experiment's goals and the architecture of the setup it utilizes in order to increase the comprehension of the remaining sections. An exhaustive description of these issues has been presented in D4.6.1 (CONFetti Experiment problem statement and requirements).

The CONFetti experiment aims to investigate the possible applications of FMI (Future Media Internet) technologies in the improvement of the sports training process. As the relationship between the coach and the athletes is irreplaceable, the goal is not to substitute it, but to augment the availability, convenience and effectiveness of the process basing on this relationship. The technologies that will be utilised include HD videoconferencing, stereoscopy, motion tracking and augmented reality. The experiment will be held at the CAR (Centre d’Alt Rendiment) venue. This will allow the experimenters to evaluate their system in a realistic target environment.

The experiment will employ a system allowing the coach to hold a training session without the need for his presence in the venue. He will connect remotely with his protégés located in the training hall using a high-definition (HD) videoconferencing tool. Additionally, he will be able to review and present archival footage of athletes recorded with stereoscopic (3D) HD cameras and stored in the experiment's video repository. This footage will also contain a 3D model of a human body reflecting the athlete’s movements collected via motion tracking. The stream with the superimposed model will be treated as one of the sides of the videoconference for both the athletes and the coach to view.

Figure 1. The CONFetti experiment setup

The experiment will employ a system allowing the coach to hold a training session without the need for his presence in the venue. He will connect remotely with his protégés located in the training hall using a high definition (HD) videoconferencing tool. Additionally, he will be able to review and present archival footage of athletes recorded with stereoscopic (3D) HD cameras and stored in the experiment’s video repository. This footage will also contain a 3D model of a human body reflecting the athlete’s movements collected via motion tracking. The stream with the superimposed model will be treated as one of the sides of the videoconference for both the athletes and the coach to view.
The diagram of the setup utilised by the experiment can be seen in Figure 1. The roles of the different components and interfaces are explained in Section 4 in their corresponding sections.

Two runs of the experiment are planned. The preliminary run will allow the experimenters to identify any potential problems in the experiment setup and to fine-tune the parameters. The final run will be carried out to gather the QoS and QoE measurements in an optimal setup.
3. General experiment status

During the first period of work the experiment's detailed specification and requirements were defined. As a result, the required effort was divided into stages and tasks. The first stage would be the preparation of the system to be tested. In the next phase, the first experiment run is to be performed. After making potential improvements in the system resulting from lessons learnt in the first run, the second and final run of the experiment will be executed. Finally, the results of the experiment will be gathered and processed.

The CONFetti system is currently in the final period of the preparation phase. The experiment's first run is planned for May 2013. The system's components necessary for this run, namely the 3D transcoder and the videoconferencing client have already been made capable of providing the required functionality, which is now in the test phase. The 3D transcoder is able to receive stereoscopic signal from a 3D camera and transcode it into a network RTSP stream which can be sent to the AVCC or the Minisip\(^1\) videoconferencing client. Minisip, in turn, can receive this signal and display it in 3D on a capable display.

Integration with EXPERIMEDIA components planned to be used in the CONFetti experiment, ECC and AVCC, is at an earlier stage. As the experiment's design assumes that AVCC will share three interfaces with the rest of the setup, the cooperation between the experimenter's and the component's developers is quite challenging and requires much effort. The specifications for these interfaces have been discussed and agreed upon in most parts. One of the interfaces (with the 3D transcoder) is already in the phase of testing, the one with the Minisip VC client is waiting for the preparation of a test instance of AVCC and the one with the coach control panel is still being developed, as it is more complicated than the other two.

Since all the software components of the CONFetti setup are written in C++, a C++ client for the Experiment Content Component is needed. As there are only Java clients available at the moment, the experimenters are collaborating with the component's developer to create a C++ client.

Figure 2. Updated Gantt chart for the CONFetti experiment

If the integration with EXPERIMEDIA core components is not finished in time for the first run of the experiment, it can still be performed. The main functionality, which is a remote training

\(^1\) http://minisip.org
session with stereoscopic video of the athlete's performance will be ready. In this case the ability to use archival video materials with 3D models superimposed will be evaluated in the second run (as AVCC is necessary for it to work). Figure 2 presents an updated Gantt chart for the CONFetti experiment.
4. Progress in specific areas

This section provides a review of progress made in specific pieces of the experiment's workload.

4.1. Adaptation of the HDVIPER platform for the experiment

The HDVIPER component's main task is to enable a stereoscopic HD videoconferencing connection between the athletes in the training room and the remote coach. Additionally, it allows the coach to review and present the archival 2D or stereoscopic footage of previous athletes' performances. Remotely rendered 3D models are superimposed on this footage. There are two instances of the videoconferencing client, one running on a machine at the coach's site, the other in the training room at CAR. The addition of the archival stream and the superimposition of 3D models is done on the latter machine.

The videoconference client application of the HDVIPER platform, Minisip, requires the addition of several features in order to make the experiment feasible or more comprehensive. The first of them was the ability to forward an incoming video stream while concurrently sending it to the local display. The lack of this feature would make it impossible for the athletes to watch the stream with archival recordings which is forwarded from AVCC to the coach by the Minisip client running on their machine. In order to overcome the issue, the decoding and display of the forwarded video stream in Minisip was implemented.

The scenario requires the capability to display multiple simultaneous video streams, some of them stereoscopic. As of now, Minisip is only able to display a single stereoscopic stream. This insufficiency created another field of improvement, which is the display of multiple stereoscopic streams. The crucial limiting factor is the need to display both the stereoscopic feed and the monoscopic streams, along with the classic GUI control elements. After in-depth research the alternate frame rendering technology has been chosen to overcome this insufficiency. In the proposed mode the whole content of every frame being output by the computer is going to be shown to a single eye only. With careful synchronisation, each eye is going to be shown the desired content alternately, resulting in an immersive mono- and stereoscopic environment. The only disadvantage of the proposed solution is a reduced frame rate. In order to establish if this will prove to be an issue for the participants when displaying video material of dynamic gymnastics sessions, the mode employing the single stereoscopic stream in 60 fps will also be used in one of the experiment runs. The chosen solution is going to be implemented in the upcoming weeks.

Minisip can handle the acquisition and encoding of a stereoscopic video stream, however only in the backward-compatible, reduced resolution side-by-side mode. This led to the identification of another desired feature, namely the acquisition and encoding of the stereoscopic feed in the nominal resolution for each eye. This task has been in progress for a couple of weeks and the necessary stereoscopic pipeline is currently under development.

4.2. Adaptation of the Vitrall system for the experiment

The Vitrall component is used to render the images that will get superimposed on the archival video material. The input data for the rendering process are models and sensor events acquired
by motion tracking done by the 3D Acrobatic Sport experiment. Visualisation will give the coach and athletes a possibility of viewing the movements and body layout from an arbitrary point of view with the ease of natural interfaces like multi touch devices. Using the optimal and boundary values of the measured movements, it will be possible to visualise all the mistakes made by an athlete in a clear manner, giving a useful insight into the real causes of spotted problems. In addition, the component will enclose a user interface for the coach and athletes taking part in the experiment. It will be possible to choose, control and tag video material played from the AVCC.

The next step of development on the Vitrall side is the creation of the coach control panel. It will be a set of HTML forms available in the Vitrall web client. It will provide all of the functionalities required to control the experiment. Only a draft of this component was created because it is closely related to the API that will be exposed by AVCC, which is still under discussion (see section 4.4.3).

4.3. Adaptation of the 3D video acquisition system for the experiment

The Audio Video Content Component is not capable of receiving stereoscopic video material at this time. The role of the 3D transcoder component is to receive the signal from the 3D camera and put it in a format acceptable for AVCC without losing its stereoscopic properties, so it can be properly retrieved by the VC client. This involves format change, colour correction, geometrical alignment and output image formatting in real time. The transcoder utilises hardware grabbers for various video inputs and outputs, it uses software processing of the 3D stream and is able to provide standard 3D formats such as side-by-side, frame packed video and network packed streams such as the Minisip feed, but it is open for any custom solutions as well. It can also share data about the transcoding process and network statistics. That makes the 3D transcoder a very flexible system that can be dynamically reconfigured.

The 3D transcoder is designed to accept uncompressed live 3D video streams produced by professional dual-camera systems as well as small consumer dual-lens cameras. It must provide a transparent 3D stream packed into a 2D stream for systems not capable of handling 3D video. Currently, it encodes its output to a H.264 video stream and transmits it using the RTP protocol.

The input is realised using a BlackMagic DeckLink HD Extreme 3D+ video PCIe card. It can accept two simultaneous HD-SDI inputs as 3D video (left and right eye stream) or a HDMI 1.4 embedded 3D video signal. That allows using any type of 3D camera system. The card itself is able to perform various live 3D video signal conversions but they are insufficient for the project's objectives. Therefore the card is used only as a multi-input device.

The first step of the transcoding process is receiving and adapting frames from the DeckLink card to the proper size (resolution) and pixel format. For input the video size is always dual full-HD 1920x1080 frame. The transcoder either merges two full-HD frames into one 2HD 3840x1080 frame or scales them 50% horizontally and merges to a normal full-HD frame as side-by-side video. The second method is a “safe variant” because it produces a completely transparent 3D video stream. There is of course the drawback of quality loss due to the scaling process.
Next, the prepared video frames are passed to a H.264 video encoder that is realised using the libx264 library. The software runs on an i7 four core PC under Ubuntu OS and provides enough computing power to stream a 2HD video at 25 fps.

The last step is packing the encoded video to a RSTP stream, which is described in 4.4.1.

4.4. Integration with Audio Video Content Component

The AVCC is used for storing the archival footage of athletes' performances, both in 2D and stereoscopic. Afterwards, the material is served to the VC client to be used as one of its input streams. The material from different cameras should be synchronised to enable the coach to switch views dynamically. He should also be able to pause, rewind and fast forward the video.

Taking that into account, AVCC will interface with 3 elements of the CONFetti experiment's setup: the 3D transcoder, Minisip videoconferencing client and coach control panel. Therefore, a substantial effort is required to cooperate between the experimenters and the component’s developers. A detailed description of progress in these efforts per interface follows.

4.4.1. 3D transcoder

The 3D transcoder element's task is to accept the raw stereoscopic video signal from dual-lens cameras or double camera rigs, transcode it and package it into a network stream that can in turn be forwarded to AVCC or the Minisip VC client. There are multiple formats of encoding stereoscopic video including Side by Side, Frame Packing and Frame Sequential. The choice of the transcoder's output format should be configurable. As AVCC does not currently support 3D video this choice will be transparent to the component and the material will be treated as 2D video while receiving and storing it. The stereoscopic qualities of the video will be utilised when it will be displayed by Minisip which will acquire it from AVCC.

The first decision concerning the 3D transcoder - AVCC interface that had to be made was whether the "push" or "pull" communication paradigm should be used. The "push" option assumes that the 3D transcoder establishes a connection with AVCC and tries to transmit video through it whenever it receives signal from the cameras. In the "pull" paradigm, on the other hand, AVCC would try to establish the connection and pull the signal when it is needed, for example to display the 3D camera in the list of sources for the coach to choose or to send the signal to Minisip. Both these approaches have advantages and disadvantages, so initially the "pull" one has been chosen for testing as it was simpler to set up on the component's side.

The next choice to be made was whether to use the RTSP protocol for multimedia session control or to generate an SDP file describing the session alongside the RTP stream. The transcoder side uses the LIVE555 Streaming Media library which already supports RTSP, so this option was chosen.

The last decision concerning 3D transcoder - AVCC communication was the choice of the transport protocol for the RTP stream. Two options taken under consideration were transmitting an ordinary RTP stream over UDP or transmitting an RTP stream alongside RTSP data over TCP. Eventually the TCP protocol was chosen as it is preferred by the AVCC side. The interface integrating those two components is currently under tests.
4.4.2. **Minisip videoconferencing client**

In order to integrate with AVCC Minisip is required to be able to receive video signal from the component. As both Minisip and AVCC support the RTP protocol and H.264 codec, this task consists mainly of agreeing on the protocol's configuration and testing the connection. One possible caveat is the fact that AVCC does not operate on raw RTP signal (like Minisip does), it controls the stream using RTSP commands. Those commands will be issued by the coach control panel which is a different component in the experiment's setup. Therefore testing the Minisip - AVCC connection point before the control command interface is ready proves not to be trivial, nevertheless efforts are undertaken to make it possible.

4.4.3. **Coach control panel**

The control panel will allow the coach to choose and control video materials to be presented in the videoconference (from both archival and live sources) as well as to record them and put short descriptions in form of tags in them. As this is experiment-specific functionality a specification of the interface between the control panel and AVCC had to be prepared:

The following methods should be available in a REST interface, the result should be an xml document or HTTP code if the method does not result in data being returned.

An example call would look like this:

/SwitchCamera?cameraName=Camera0

- **GetAllCameras()** - returns names of all cameras available (cameraName)
- **SwitchCamera(cameraName)** - starts the live mode, play stream from camera with specified name.
- **StartRecording(List<CameraName> cameraNames, List<MaterialIdentifier> identifiers)** - only in live mode, records the streams with the given cameraNames, recording should start at the same time for all cameras. Provided materialIdentifiers will be unique, composed from the material identifying data and the uuid, the example may look like this: "1-03-2013-camera0-Poznan_ee3bd9a5-8684-412d-9cff-a606af5d9f25". The materialIdentifier has to be a part of the resulting filename. The length of both list has to be the same. Example call of this method would look like this: /StartRecording?cameraNames=camera0,camera1,camera2&identifiers=1-03-2013-Poznan-camera0_ee3bd9a5-8684-412d-9cff-a606af5d9f25,1-03-2013-Poznan-camera1_ee4bd9a5-8684-412d-9cff-a606af5d9f25,1-03-2013-Poznan-camera2_ee5bd9a5-8684-412d-9cff-a606af5d9f25
- **StopRecording(List<CameraName> cameraNames)** - only in live mode, stops recording stream from the specified cameras.
- **GetAllMaterials()** - returns all materials available via VoD, result is a set of pairs <filename, length>.
- **PlayMaterial(filename, timestamp)** - starts the VoD mode, plays the specified prerecorded material starting at the timestamp.
- **PauseMaterial(filename)** - only in VoD mode, pauses the current material.
StopMaterial(filename) - only in VoD mode, stops the current material.

The TAGS relation should have the following structure:

- **identifier**: just the primary key, auto-generated
- **timestamp**: time
- **materialUuid**: string (uuid part of materialIdentifier passed to the StartRecording method), used to link tag and material
- **key**: string
- **value**: string (internal structure is our responsibility and specific to our scenario)

Tags related methods (may be available through a different interface):

- AddTag(timestamp, materialUuid, key, value)
- GetTagsForMaterial(materialUuid) - returns the tags by the materialUuid
- RemoveTagById(identifier) - removes the tag with given identifier

Example tags:

- (0, 0, "ee3bd9a5-8684-412d-9cff-a606af5d9f25", "position", ") - camera position, it will not be provided automatically, it would be inserted manually and stored in database
- (1, 3, "ee3bd9a5-8684-412d-9cff-a606af5d9f25", "score", "10") - score of the exercise
- (2, 1, "ee3bd9a5-8684-412d-9cff-a606af5d9f25", "note", "This should have been done better") - description of a specific moment of exercise

The above specification was prepared by the experimenters and is now under discussion with the AVCC creators.

4.5. Integration with Experiment Content Component

The ECC’s role is to gather monitoring QoS data from the other components that register as sources of such data. The monitored entities in the CONFetti setup are the videoconferencing, remote visualisation, 3D transcoder and AVCC components.

As already mentioned, currently the experimenters are collaborating with the component’s developer to create a C++ client for it. The ECC side will deliver an API for which using the RabbitMQ AMQP library is considered. The experimenters will then implement the client making use of that API. Finally, the monitored components will be extended to use this client in order to deliver their monitoring data to the ECC.

4.6. Integration with 3D Acrobatic Sport experiment

The 3D Acrobatic Sport experiment led by STT is another EXPERIMEDIA initiative aiming to perform tests of FMI technologies in CAR. There are overlapping areas in the scopes of both experiments, which brought to mind the idea of cooperation. The motion capture data and the 3D mesh created by the system utilised in 3D Acrobatic Sport will be used by CONFetti’s remote visualisation system (Vitrall) to generate 3D models, which will later be superimposed
onto CONFetti video (also in 3D). Sensor data will be exposed by STT via a VRPN\(^2\) server integrated into STT’s motion capture software and consumed by the VRPN client on the Vitrall side. VRPN (Virtual-Reality Peripheral Network) is a library implementing a network-transparent interface between physical devices like a joystick or Wiimote and client applications. It unifies a lot of different physical devices in a set of classes: tracker, analogue, button, dial, sound. Each of these classes is characterized by the type of data it provides.

VRPN is designed to work in client-server architecture, where the server is an application managing the physical device and the client is an application consuming data from the server. The library offers rich logging and playback capabilities: it allows the recording of the whole communication between the server and client to a simple text file on the client side and then replay it without connecting to the server.

During the development the Vitrall VRPN module was created. It makes use of the VRPN library, especially of the client classes. The implementation was focused on the VRPN tracker device type. This device type stores the physical device’s position and orientation. It may consist of one or more sensors. Each sensor may be associated with one human body part, which will be represented by a 3D model on the rendering side. Vitrall translates VRPN events coming from these sensors to its own data types and uses them to control the models. The developed module is finished and ready for the integration tests.

The exchange of e-mails and a teleconference between representatives of both experiments led to the following conclusions:

- To integrate the experimental systems it is necessary to record a gymnastics training session in CAR using 2D and 3D cameras and, simultaneously, store motion tracking data of that same session generated by STT’s sensors.
- For the development on CONFetti side PSNC will need a dumped file containing an example VRPN session using the same features that will be used for dumping the motion tracking data during the gymnastics training session.
- The 3D models of rigid parts of the human body used by STT’s system will be needed by PSNC in order to generate the animated model.
- Integration tests should be performed involving connection from PSNC software to the VRPN plugin on STT’s side before the actual gymnastics session.

Subsequently, the 3D models were delivered by STT. The integration tests will probably initially consist of using STT’s capture application on PSNC’s side to replay the recorded data, so the connection can be simulated. To that end, a hardware license stick for the application was exchanged between STT and PSNC. The date of the simultaneous recording of the video and motion tracking material is under discussion, it will probably be May 2013.

\(^2\) http://www.cs.unc.edu/Research/vrpn/
4.7. **Preparation for first experiment run**

In the experiment's original timeline its first run was scheduled to take place in April or May 2013. Currently it is planned to take place in May. The exact dates are still being fixed as synchronisation between different partners is required. Obviously, the timing has to be agreed between the experimenters and the venue. Additionally, the presence of the 3D Acrobatic Sport experimenters is also required as their system is going to be used during the CONFetti experiment. The partners responsible for AVCC will need to be present if integration of the component will be completed in time to use it in the experiment.

4.8. **Legal and privacy issues**

As the CONFetti experiment plans to expose real athletes in the CAR venue to the technology and, as result, store and process videos containing their images and animations of their body motions, legal support is needed on the matter.

Discussions between representatives of the venue, the experimenters and the consortium partners responsible for Privacy Impact Assessment have been held during EXPERIMEDIA's General Assembly in Madrid in January 2013 as well as during the meeting in CAR following the GA. Those talks were followed up with an e-mail exchange during which a questionnaire was filled by both the experimenters and the venue representatives in order to complement the PIA-related experiment information that was delivered in D4.6.1.

After gathering the necessary information representatives of the partner responsible for PIA proposed an action plan regarding personal data flows in the CONFetti experiment. The main point of this plan is the need to sign a controller-processor contract between the venue and the experimenting institution (CAR and PSNC).

4.9. **Dissemination**

Disseminating the results of research projects is a crucial factor in being part of the scientific community. That is why the CONFetti experimenters have submitted an extended abstract to the eChallenges 2013 conference's Technology Enhanced Learning thematic area. As the abstract got accepted, the actual article is being prepared alongside the presentation that will be given during the conference. The article's main focus will be the experiment, but it will include a section on the EXPERIMEDIA system as well.

Furthermore, the experimenters took the opportunity of the technical meeting in CAR following EXPERIMEDIA's General Assembly in January to record some stereoscopic video materials of gymnasts. The main purpose of this action was to gain a preliminary view on the technical issues related with obtaining such material, but after post-processing the videos it turned out they are quite impressive and could prove valuable in dissemination efforts.

4.10. **Meetings**

The CONFetti experimenters have so far participated in three meetings with other members of the consortium. The first one, held in November 2012 in CAR, was a kick off meeting for the open call experiments to be run in the venue. CAR, STT, PSNC and ATOS, who are responsible for AVCC, were participating.
The second meeting was the EXPERIMEDIA General Assembly in Madrid in January 2013, where the open call experimenters met face to face first time with most of the other partners. The meeting had a great influence on the mutual understanding between parties that will have to collaborate during the project.

The third meeting was the technical meeting in CAR following the General Assembly. As mentioned before, it was used as an opportunity to discuss PIA related issues and to record preliminary stereoscopic materials featuring the gymnasts.

Apart from the face to face meetings, representatives of PSNC take part in the regular teleconferences organised by the consortium. These serve to exchange crucial information and clarify some points in a more effective way than through e-mail. The progress made by different partners is also reported during those meetings. The conferences that PSNC takes part in are the ones related to Activity 4 (Experimentation), Experiment Content Component and Dissemination. In March 2013 PSNC organised a teleconference with STT to agree on details of integration between the corresponding experiments.
5. Conclusion

The overall progress made in the CONFetti experiment is satisfying from the experimenters’ point of view. However, there are areas in which delays were experienced, mainly the ones requiring coordination between different partners. Thanks to the flexibility in the original scheduling, those delays will not affect the date of the first run of the experiment. The trial run of the experiment is planned to be executed in May 2013. By then all the work that is required to achieve essential functionality will be finished. In case of further unexpected delays the experimental setup will be modified accordingly in order to omit the elements that are not ready while taking maximum advantage of the ones that are completed in order to provide as much experimental information as possible and pinpoint any potential issues that will be taken into account for the final run of the experiment.