This deliverable describes the Digital Schladming experiment to be carried out by IN2 on the Schladming facility. The deliverable is based on the initial description of the experiment as has been presented in the Description of Work and the study of the EXPERIMEDIA specifications and infrastructure capabilities, extending the initial experiment description with a detailed view on the required functionalities and the planned deployment of the Digital Schladming experiment made up of two component applications: MySchladming and the Schladming Pinboard.
<table>
<thead>
<tr>
<th>Project acronym</th>
<th>EXPERIMEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full title</td>
<td>Experiments in live social and networked media experiences</td>
</tr>
<tr>
<td>Grant agreement number</td>
<td>287966</td>
</tr>
<tr>
<td>Funding scheme</td>
<td>Large-scale Integrating Project (IP)</td>
</tr>
<tr>
<td>Work programme topic</td>
<td>Objective ICT-2011.1.6 Future Internet Research and Experimentation (FIRE)</td>
</tr>
<tr>
<td>Project start date</td>
<td>2011-10-01</td>
</tr>
<tr>
<td>Project duration</td>
<td>36 months</td>
</tr>
<tr>
<td>Activity 4</td>
<td>Experimentation</td>
</tr>
<tr>
<td>Workpackage 4.4</td>
<td>Digital Schladming</td>
</tr>
<tr>
<td>Deliverable lead organisation</td>
<td>IN2</td>
</tr>
<tr>
<td>Authors</td>
<td>Alexandru Stan (IN2)</td>
</tr>
<tr>
<td>Reviewers</td>
<td>Jens Grubert (TUG), Stephen Phillips (IT Innovation)</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Status</td>
<td>Final</td>
</tr>
<tr>
<td>Dissemination level</td>
<td>PU: Public</td>
</tr>
<tr>
<td>Due date</td>
<td>PM15 (2012-12-31)</td>
</tr>
<tr>
<td>Delivery date</td>
<td>2013-02-04</td>
</tr>
</tbody>
</table>
Table of Contents

1. Executive Summary .. 3
2. Introduction .. 4
3. Experiment Description .. 5
 3.1. Learning Objectives .. 7
 3.2. Scenario .. 7
 3.3. Experiment Procedure ... 8
 3.4. Background ... 9
 3.5. Assumptions and Preconditions .. 12
 3.6. Parameters ... 13
 3.7. Constraints .. 13
4. Ethics and Privacy .. 14
5. Experiment Design .. 15
 5.1. Requirements ... 15
 5.2. System Architecture ... 15
 5.3. Content Lifecycle .. 16
6. Plan for Implementation ... 17
7. Conclusion .. 18
1. Executive Summary

This deliverable describes the Digital Schladming experiment to be carried out by IN2 on the Schladming facility. The deliverable is based on the initial description of the experiment as has been presented in the Description of Work and the study of the EXPERIMEDIA specifications and infrastructure capabilities, extending the initial experiment description with a detailed view on the required functionalities and the planned deployment of the Digital Schladming experiment made up of two applications: MySchladming and the Schladming Pinboard.

DigitalSchladming provides the necessary services to Schladming to engage with guests visiting the region. The experiment addresses the needs of visitors for a wide range of information access, from practical issues during their stay, e.g. what to do tomorrow or where to find the best Italian restaurant, to sharing their experiences.

DigitalSchladming is based on own work and results of previous projects and plans to use the SCC, ECC and to a certain extend the AVCC baseline components of EXPERIMEDIA. The proposed experiment is centered around an information-rich, web-based media channel for the entire region, the Schladming Pinboard, and a personal hub for media contents of each end-user, MySchladming. The two systems are seamlessly interconnected, allowing the end-users of MySchladming to effortlessly publish the content they want to the Schladming Pinboard. Together the two systems are able to create a hyperlocal temporally bound community.

Since information access is not only restricted to guests visiting the region, local citizens also benefit in the same way from DigitalSchladming. In addition to this, the project provides local businesses with a new digital channel to reach their target audiences and offer their services. Businesses not only can engage in advertising targeted to consumers but also listen to needs or requests of consumers and react accordingly. Thus, we believe that DigitalSchladming can evolve into a marketplace of services for both visitors and citizens and this will have a very large impact for the Schladming region. Finally, destination managers can take advantage of the curational aspects of DigitalSchladming and promote the region as a whole, with the aim to deliver the best experience to visitors and guests and so make them return in the next season.

The structure of this document is as follows. Section 1 gives an introduction of the underlying research questions which will be explored in the experiment, while Section 2 describes in more detail the proposed experiment, outlining its components, scenarios, procedure, background work, assumptions and preconditions. Section 4 discusses the ethics and privacy issues considered during the experiment. Section 5 talks about the experiment design, listing the preliminary requirements and the system architecture. Finally, Section 6 outlines the plan for the experiment implementation.
2. Introduction

This deliverable describes the experiment design and plan for one of the three embedded experiments that use the EXPERIMEDIA facility. EXPERIMEDIA is a "FIRE" (Future Internet Research and Experimentation) project. For the project and in this context "experimentation" means that we do not know exactly beforehand what the researchers using the EXPERIMEDIA facility will want to do. The embedded experiments are used to provide requirements during facility development and to verify and validate the facility capabilities to be used by further experiments that are either funded during the open calls or unfunded.

In a recent event, World Tourism Organisation Secretary-General, Taleb Rifai said: “New communication technologies, particularly the Internet, have been game-changers for the tourism sector”. Still many new technologies (e.g. platforms for social connectivity and user engagement, mobile information access) are just now beginning to be employed in the tourism sector. Because of their novelty it is not yet known which kind of innovative services based on these technologies will create real impact among the visitors and local citizens alike. Nevertheless, early experiments presented at the latest World Congress on Snow and Mountain Tourism indicate that better information access and experience sharing can really increase the performance indicators of mountain and ski resorts.

The DigitalSchladming experiment proposes to test how innovative services of the Future Media Internet can increase visitor experience, connect and promote better quality of life. The aim is to incorporate the experiment results into the next generation of hyperlocal social media services which are fun to use, provide value to all stakeholders and have a high take-up rate.

Since information access is not only restricted to guests visiting the region, local citizens also benefit in the same way from DigitalSchladming. In addition to this, the project provides local businesses with a new digital channel to reach their target audiences and offer their services. Businesses not only can engage in advertising targeted to consumers but also listen to needs or requests of consumers and react accordingly.

Finally, destination managers can take advantage of the curational aspects of DigitalSchladming and promote the region as a whole, with the aim to deliver the best experience to visitors and guests and so make them return in the next season.
3. Experiment Description

DigitalSchladming embedded experiment provides the necessary services to the city of Schladming to engage with guests visiting the region. The experiment addresses the needs of visitors for a wide range of information access, from practical issues during their stay, e.g. what to do tomorrow or where to find the best Italian restaurant, to sharing their experiences.

The proposed experiment is centered around an information-rich, web-based media channel for the entire region, the Schladming PinBoard, and a personal hub for media contents of each end-user, MySchladming. The two systems are seamlessly interconnected, allowing the end-users of MySchladming to effortlessly publish the content they want to the Schladming PinBoard. Together the two systems are able to create a hyperlocal temporally bound community.

We describe below the two experiment components in more detail.

Schladming Pinboard

The Schladming PinBoard is able to aggregate data and media feeds (images, videos, audio files and documents) into a unified media channel with powerful faceted search capabilities. Tags and categories are extensively used in order to allow the user to find the right information easily.

Any registered users can contribute to the Schladming PinBoard, sharing with the community the joy and enthusiasm they encountered in a particular moment or their frustration and questions raised in a certain situation. Locals and local businesses are users of the platform themselves and use it to advertise local events and offers, or simply to interact with those visiting the region. Users can share not only text but also images, audios and videos. A response to the simple question “Where is the best steak in town?” could just be a geo-tagged photo.

The Schladming PinBoard will also have the possibility to distinguish between users with different levels of access rights. Administrative users can monitor the flow of information and also bring in a curated information feed, which will be easily accessible and distinguishable thanks to the specific tags and categories employed. For example the tag “#staffpick” would reveal items that have been selected by e.g. a city destination manager, while filtering by category “%infrastructure+%official” would reveal items introduced by officially accredited users only and which are pertaining to the infrastructure, e.g. kindergarten, information point. The example presented implies that a small curational effort is necessary when the service is first set up to add the “official” information on the platform. This information is expected to be static and not require changes during the experiment run and later during operational stages.

The Schladming Pinboard is not meant to replace current social media platform but rather augment them and provide visitors who are on vacation with a more easy to digest feed which is relevant to the holiday location they are in: Schladming. More, it does not restrict information only to those users who are already part of a social media platform and have agreed to the terms of use dictated by the more general purpose for which the platform is used. Rather than doing that, the Schaldming Pinboard is meant to provide information to all and to integrate well known social media platform. To this end the experiment plans to use EXPERIMEDIA’s Social
Content Component (SCC) in order to allow relevant information streams from Twitter and Facebook to enter the Schladming Pinboard. An appropriate category or tag will be automatically assigned to each of the information bits in order to clearly indicate its source and allow users to filter the Schladming Pinboard accordingly. Schladming Pinboard registered users can also choose to make a post visible on Twitter and Facebook simply by adding tags when making their post on the Schladming Pinboard (i.e. post once, share multiple).

MySchladming

MySchladming provides the visitors with an easy-to-use platform for storing the digital memories of their vacation in Schladming, allowing them to share those specific bits with the networks and groups of their choice.

A MySchladming account can belong to one user or a group of users, which is particularly handy for families since they now can store and manage all of their Schladming holiday memories from one single repository which lives in the cloud and can be accessed from anywhere. Minimum personal information will be necessary for the creation of an account (i.e. email address and a user name).

Users can upload content either via the MySchladming website, or by sending an email to a specific and unique mailbox. When sending an email, the multimedia content is found in the attachment while tags and captions can be added in the subject line. When uploading via email, a user can employ reserved tags (e.g. @public) to instruct the system that the piece of content they are currently sending together with the caption should be immediately posted on the Schladming PinBoard. A similar process can be used to instruct the system to post on behalf of the user on Facebook or Twitter. At the end of the vacation (or at any time in between), the user can opt to download all of the content that they themselves have uploaded on MySchladming. Upon request the user can also choose to delete any or all of the content, which will automatically remove the respective insertions from the Schladming PinBoard.

Stakeholders

DigitalSchladming has the following stakeholder ecosystem:

The visitors to the region, who become the primary end-users; they use the service to store and share their digital experiences in Schladming as well as to get valuable information from a vibrant online community about the day-to-day life during their holiday.

Local businesses who can use the service in order to gain a new channel for reaching their target audiences.

Citizens of Schladming, who benefit from a new up-to-date information stream about their region and can additionally use the service to connect with the visitors of the resort and even their own local community.
Municipality and tourist office, who play the role of service providers and administrators, possibly subcontracting software experts for specific developments and software lifecycle management.

3.1. **Learning Objectives**

Our proposed experiment plans to test the feasibility of an innovative service for hyperlocal information provision and consumption, which will allow citizens of Schladming to have a better quality of life and guests an enhanced visitor experience.

DigitalSchladming is complementary to the Schladming App driving experiment already being prepared by the EXPERIMEDIA consortium, although it addresses the same problem of pertinent information provision and increased user engagement through digital technologies.

During the experiment we aim to investigate:

If a Future Internet (FI) enabled region, such as Schladming (with over 170 WiFi hotspots and mobile broadband, soon also including LTE), provides the necessary connectivity infrastructure for guests to use multimedia based digital services for information provision with ease (i.e. whenever and wherever they need them).

If hyperlocal information services will be taken up successfully by the guests of the region of Schladming and the local stakeholders. What the take-up barriers are.

What patterns of usage of hyperlocal services are most relevant to the guests of a touristic region and its local stakeholders. What kind of an influence does the season (i.e. winter or summer) play on these patterns of usage, can we figure out the main causes.

Which kind of information, what amount and in what way should the information be presented to the guests of a touristic region (in winter and in summer).

If the EXPERIMEDIA infrastructure is appropriate for running such an experiment and if it can provide user friendly tools for monitoring the experiments.

3.2. **Scenario**

To better understand how to plan to achieve the learning objectives it is important to consider the following usage scenario:

Alan, Sue and their five year-old daughter Katie are spending a one-week vacation in Schladming. As usual, they stop by the tourist information point during their first day, in order to get practical information. There they learn about the new free service offered in the region: DigitalSchladming.

Finding local businesses

That very same evening they decide to create an account just as they were getting ready to go for the first family dinner. Using her pad, Sue begins to browse the Schladming PinBoard and is amazed by the wealth of information available. She quickly notices that she can play with the...
different filters on left-hand side of the screen in order to display only certain topics. Alan
decides to put in a search for “food”, and he quickly receives a feed related on this topic. One of
the pictures catches the attention of Katie; the caption reads “Dinner for 3, with complementary
drinks on the house”. They click on this item and a video starts playing, introducing them to
what the specials for that evening. Already by the time Sue clicks to see where the restaurant is
on the map, they have already decided where they will have their first dinner in Schladming.

Finding practical information

Next day Alan and Sue want to try a more advanced slope, but they are not sure what to do with
Katie. Using the advanced search functionality of the Schladming PinBoard, Alan and Sue
search for the closest nursery school to the slope. The system shows that there is one just 500m
away and the parents are able to access all the necessary information, i.e. what their schedule is,
telephone number, how much it costs and whether or not they can take care of kids over lunch
as well.

Sharing experiences

Up on the slopes, taking a break at the cabin, Sue is taking a quick snapshot with her
smartphone. She is sending it via email to their unique personal mailbox writing in the subject
line “What a great view from up here! Who can recommend another great route? #skiing
@public”. The picture gets immediately stored on their online repository and is also posted on
the Schladming PinBoard for everyone to see and comment. Later on Alan is taking some
snapshots of his own and is uploading them to MySchladming. At the end of the day, the family
is pleasantly surprised when they receive in their inbox a visually appealing electronic journal
containing all of the great pictures of their day. Together with Katie they relieve the great
experiences.

Building a lasting relation with Schladming

At the end of their holiday, Alan is downloading an archive with all of the content that they
upload during the family holiday. The system then asks if he would like to temporarily suspend
the account and receive via email a bi-weekly newsletter containing the best posts of the
Schladming PinBoard. Thinking that he might go to Schladming again in the future, Alan follows
this suggestion and over the course of the year, is unintrusively reminded about the resort. After
about 5 months, impressed with the summer pictures of Schladming that are reaching his inbox,
he decides that it is time to see how the place looks without all the snow.

3.3. Experiment Procedure

The experiment will use agile software engineering methods in order to reduce the risks
associated with the start on a new test-bed such as EXPERIMEDIA. An iterative development
cycle when running the experiment ensures that all aspects of the user requirements are
incorporated and validated in the technical solution. Especially in the case where a new
computing paradigm is to be employed, this model with short iterative cycles is a prerequisite for
the thorough understanding and the user approval of these technologies.
We plan to have two big iterations: one for running the experiment in the Winter Season and one for running it in the Summer Season.

Thus, after designing the experiment with the help of the EXPERIMEDIA team and setting it up, the workflow will then be to:

1) run, monitor and evaluate the experiment in the winter season, then
2) based on the received feedback prioritise and refine the experiment use-cases/hypothesis, which subsequently will be
3) run, monitored, validated and evaluated during the Summer Season;
4) based on the feedback and results received the final report of the experiment will be produced.

3.4. Background

Digital Schladming will not be developed from scratch. The proposed experiment is based on the research results of two projects: EUTV and FollowThePlace. With DigitalSchladming we want to adapt and customise the research results, combining them together in an innovative new way and exploring how FI-enabled scenarios can make use of the developed technologies and tools and bring them from the research labs into the mass market.

EUTV

The first project upon which the experiment is based is: EUTV – Adaptive Channels in Europe¹. EUTV, which amasses over 130 person-months of RTD work, has been funded by EC under Contract Number 262428. EUTV can be defined as a personalized media monitoring and collection building service. It allows end-users to define topic sensitive collections of media which will monitor online feeds and consequently auto generate thematic repositories of media files.

As such, the retrieval of metadata and automatic topic detection is a key aspect of the underlying functionalities of EUTV. Metadata matching allow the active monitoring for topics and provides end-user functionality such as searching, sorting and filtering for keywords. Although feeds may contain metadata, document collections and media files usually contain little descriptive information. To meet these gaps in descriptive metadata EUTV provides media analysis functionality which analyses audio-, video- and image streams regardless of their origins and enrich these files with the extracted metadata.

To cater for these requirements, the EUTV platform is divided into three layers:

1) Interface layer: holds the core end user functionality of the EUTV platform, enabling users to register feeds, search, filter and search in feeds, personalize topic sensitive collections, monitor feeds for topics of interest and sharing collections online.
2) Mediaprocessor layer: analysis of audio-visual visual materials, image materials and documents (taking care of mime-type extraction, prompting the appropriate and

¹ http://www.eutvweb.eu
dedicated processors to pre-process, analyse and transcode the files to extract metadata and enrich the frontend.

3) Infrastructure layer: generic SOA-based services, media repositories and holds the data which the other layers can draw on.

The usage of a SOA based architecture in EUTV is particularly advantageous in the case of integrating our own technology with the EXPERIMEDIA modules (i.e. SCC, AVCC, ECC). What is more, for the actual implementation, EUTV employs widely used standards: SOAP as its transport protocol with XML as its data format and Web Service Description Language (WSDL) for providing the metadata format for clients to connect to a service.

The EUTV project is employing an iterative development methodology and it is currently in its final year of development, having thus already achieved results mature enough to form the basis of the DigitalSchladming experiment.

The figure gives a glimpse at how the Pinboard could look like using the EUTV technology:

![Schladming Pinboard](image)

Figure 1. Schladming Pinboard using EUTV interface.

Followtheplace

Another project upon which DigitalSchladming will draw underlying technology from is Followtheplace, an in-house development of IN2. Followtheplace (www.followtheplace.com) is a platform for storing and sharing geo-tagged photos and for following favourite locations. It allows users to keep their favourite locations and friends all in one place.

With Followtheplace we wanted to see how we can make use of existing apps (already installed and available on all smartphones or pads) in order to build a service that is accessible and available on all platforms. This is why Followtheplace is completely web-based. It allows for cross-platform mobile sharing by simply attaching photos to an email and optionally adding
captions and tags in the subject line. Alternatively, uploads can be done via a friendly web user interfaces. For a smooth and enjoyable user experience irrespective of the screen size we have experimented with responsive web design, building fluid layouts making use of adaptive CSS².

Followtheplace is also able to provide its users with photo recommendations, thanks to advanced algorithms that factors in, among others, the visual similarity of photos. Thus, a casual user is encouraged to dive into the photo archive made up of the previous posts.

Geo-location is an integral part of Followtheplace, which uses the GPS coordinates from the EXIF metadata to automatically assign an accurate location to an uploaded picture. If no GPS data is available, a very friendly user interface for geo-tagging is provided so that the photo can be manually geo-tagged within seconds. A distinctive feature of the service is that registered users can not only like and comment certain pictures but also follow places of interest and hashtags in order to receive automatic announcements when new content is available.

The screenshots below give a glimpse at how Followtheplace looks on different screen sizes.

Figure 2. New Feed interface of Followtheplace populated with Schladming content (as viewed on a large screen e.g. desktop computer).

² This new interface will be rolled out as a public beta on www.followtheplace.com in August.
3.5. Assumptions and Preconditions

A significant number of guests have smartphones with cameras and GPS;

End-users have (affordable) internet access either through WiFi hotspots deployed by the municipality of Schladming or through mobile broadband internet connection (3G or 4G);

Enough stakeholders will buy-in the proposed services in order to get a big enough user-base during the experiment runs;

Visitors are interested in digital services for enhancing their holiday experience;

Note here that this is also part of one of the hypothesis which we will like to verify during the experiment, namely the fact that hyperlocal services are desirable for the guests of the Schladming region.

Local business have sufficient digital literacy for making regular updates;

Crowd-sourced content from local business is essential for making the Schladming Pinboard contain valuable information for guests, and not just serve for entertainment purposes. However, we do acknowledge that there is a risk during the experiment run (especially in the winter interaction) of the local stakeholders not adding the content to the Schladming Pinboard. Part of this could be due to the fact that they are not used to using such an application on a daily basis. To mitigate this risk, a preparatory travel to Schladming is planned before the experiment run. During this visit, a number of discussions with local stakeholders is planned. More, (visual) documentation of how to upload content will be provided during the experiment run. Finally,
during the experiment, IN2 is prepared to have a presence in the region so that we can do the updates on behalf of the local stakeholders.

It is possible to monitor the experiment and measure QoS and QoE;

SCC, ECC and AVVC behave as advertised;

Integrating SCC, ECC and AVVC with IN2 technologies into coherent apps is possible;

DigitalSchladming backend/server infrastructure is able to support usage spikes

Baseline components of the EXPERIMEDIA facility are able to work reliably under real-world conditions and the provided APIs function as advertised

Municipality of Schladming should help advertise the experiment so that a critical mass of users participate in the experiment runs.

Municipality of Schladming should be able to provide access to a large info-screen for testing the Schladming Pinboard on common public spaces (e.g. the base of the lift for the ski slope).

3.6. Parameters

During the experiment we will use various data sources for the Schladming Pinboard. These data sources can include popular social media networks (such as Facebook and Twitter) as well as hyperlocal ones, such as Followtheplace. The users of the Schladming Pinboard application (i.e. guests, local businesses, tourists boards, etc) will themselves contribute content. How this content is presented on the Schladming Pinboard is subject to experimentation. Different views will be created (e.g. time-dependent feed, location aggregate, topic aggregate, source aggregate) so that it can be determined which mode of information consumption is most suitable for the envisioned scenario.

3.7. Constraints

The underlying technologies for the Schladming Pinboard and MySchladming are web-based and as such no constraints are foreseen with regard to the devices used by the users to access the application. It is however known that small variations when viewing a web page can occur when different browsers are used.

We plan to use questionnaires and online feedback forms to monitor the perceived QoE in using DigitalSchladming. These will be distributed not to a well-defined test sample, but to all users who have created an account. It is expected that only a sub-set of those users will provide feedback and it would be impossible to ensure that the sample is representative.

During the experiment runs, provided that DigitalSchladming has a good take-up, a lot of usage data will be generated. This will create difficulties in interpreting it during the analysis and experimenters might have to discard some of the data.
4. Ethics and Privacy

The DigitalSchladming experiment will follow the ethical guidelines defined already by the EXPERIMEDIA project.

Users who will be taking part in the experiment will have to register on a dedicated website of the experiment. Upon accepting to use the application they will have to read and agree to the Terms and Conditions of DigitalSchladming. As such, information on what data will be collected during the experiment, its purpose and lifetime will be given to the user. A written consent will not be required. Consent can be withdrawn, in which case all the associated data will be deleted. If a user who has deleted his account decides to join again the experiment, a new account will have to be created and no connection to the user’s old data will be possible.

The data collected will be stored on a dedicated VM of the experiment. This data will consist of social media posts and explicit posts to the experiment platform, as well as their email address and location data associated with the posts they make. The data will be held for the duration of the experiment or until the user explicitly decides to withdraw consent. The user can decide to turn off location data. Users will have to use the same pseudonym for the entire duration of the experiment. Only authorised persons (including authorised system administrators) and only after instruction can access the data.
5. Experiment Design

5.1. Requirements
Following the experiment description in Section 3, a list of preliminary requirements for the EXPERIMEDIA testbed have been extracted.

Table 1. Experiment requirements.

<table>
<thead>
<tr>
<th>#</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>There must be a good coverage of WiFi Hotspots around the Schladming region so that guests who are not from Austria could have affordable and fast Internet Access.</td>
</tr>
<tr>
<td>R2</td>
<td>There must be a good coverage of fast mobile network around the region so that Schladming locals can have Internet coverage when WiFi hotspots are not within range.</td>
</tr>
<tr>
<td>R3</td>
<td>The SCC component must be able to use Followtheplace as an input stream.</td>
</tr>
<tr>
<td>R4</td>
<td>The SCC must be able to provide XML messages to its clients.</td>
</tr>
<tr>
<td>R5</td>
<td>The AVCC should be able to provide video transcoding functionality as a web-service.</td>
</tr>
<tr>
<td>R6</td>
<td>The backend servers, SCC, AVCC and ECC components must be able to support usage spikes.</td>
</tr>
<tr>
<td>R7</td>
<td>Local stakeholders of the Schladming venue should be supportive of the experiment and contribute with relevant content to the Schladming Pinboard, and help disseminate the experiment to their guests.</td>
</tr>
<tr>
<td>R8</td>
<td>The Schladming Venue will be able to provide a large public screen for the duration of an experiment run (where the Schladming Pinboard feed will be interweaved with the regular content related to the slope conditions).</td>
</tr>
</tbody>
</table>

5.2. System Architecture
Our experiment will interface with several EXPERIMEDIA components as shown in Figure 5. As it can be seen the SCC, AVCC and ECC components will be used.
5.3. **Content Lifecycle**

The Schladming Pinboard will contain a central content repository, which can be managed by system administrators. Videos, images, textual inserts as well as audio will be handled by the system. Content is contributed to the experiment in a crowd-sourced manner by the different stakeholders. A web-interface for easy uploading of new content will provided cross-platform, such that contributions can easily be made.
6. Plan for Implementation

The work has been divided into a series of tasks to be carried out over a period of 12 months.

In total six tasks will be carried out, five of which constitute the different sequential phases of the experiment and the last one running concomitantly with the five phases ensuring that appropriate experiment dissemination actions are carried out:

- T4.4.1 Experiment description
- T4.4.2 Experimental set-up
- T4.4.3 Execution and subsequent iteration
- T4.4.4 Assessment and evaluation
- T4.4.5 Experimental write-up
- T4.4.6 Dissemination and Case studies

We plan to have two big iterations: one for running the experiment in the Winter Season and one for running it in the Summer Season.

DigitalSchladming will be conducted in full consideration of EXPERIMEDIA’s ethical oversight procedures, and will add to the methodology described above the EXPERIMEDIA experiment lifecycle management approach for adopting mechanisms to configure, instrument, monitor, control and secure the FMI system under test. This is to say that when preparing the actual experiments to be carried out a Value Impact Assessment (VIA) meta-method framework will be employed. VIA is compatible and actually benefits from the iterative approach (2 phases) which DigitalSchladming plans to take on its operational plane. This means that during the Winter Season iteration the focus will be on Opportunity Assessment (phase 1 of VIA), while Summer Season iteration will consider Opportunity Validation/Modelisation (phase 2 of VIA). Considering Business Value, User Value and Technology interactions horizontal to the experiment iterations, will help ensure that the expected impact is indeed reached.

A detailed view of the timing of tasks and the different components can be seen in Figure 6.
7. Conclusion

In this deliverable we have discussed the problem statement of the DigitalSchladming experiment and looked at the requirements which emerged from this. As described in Section 2, the DigitalSchladming experiment will give the guests of the Schladming region a new service for accessing timely information and sharing media content in a location-centric fashion. As such the region of Schladming will experiment with an emerging paradigm of the future media internet: hyperlocal media.

Digital Schladming will be composed of two complementary web-applications which can run across browsers and end-user devices: Schladming Pinboard, an aggregated media channel containing real-time information pertaining to the Schladming region, and MySchladming an online platform which allows guests to store their digital memories of their vacation easily and securely.

In Section 3 we have described the Schladming Pinboard and MySchladming in more detail, gave an example scenario, discussed the background technologies upon which the two web applications are based and further discussed the learning objectives of the experiment. There we have also discussed about the preconditions, parameters, and constraints of the experiment. Based on this analysis we have presented a list of requirements in Section 5. It should be noted that as the experiment progresses, components are better understood (while new versions are provided by the EXPERIMEDIA partners), as initial evaluations are conducted and the scope of the experiment becomes better defined, it is expected that the list of requirements will change.

The experiment will be approached in an iterative fashion, having two experiment runs, one in the winter season and one in the summer season. Although in the winter season the tested web-applications will not have the complete set of functionalities, it is expected that very valuable feedback will be collected, which will drive the more elaborate testing phase during the summer season. We expect also to learn valuable lessons about setting up the experiment on location and engaging the end-users and local stakeholders with the proposed application.

DigitalSchladming proposes an innovative Future Media Internet scenario to be tested on location in the Schladming region. As this document shows, the initial preparation for the experiment is underway and a plan in place for the subsequent development and testing phases.